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Quantum Monte Carlo simulations of driven spin-boson systems
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A discretized path integral formulation of the real-time dynamics applicable to a general external field is
derived for the driven spin-boson model to extend the recently developed real-time Quantum Monte Carlo
algorithm to driven systems. Numerical results are obtained for a monochromatic periodic driving force and
Ohmic dissipation with a high-frequency cutoff. The impact of an external driving field on the dissipative
dynamics is examined for systems with a time-dependent bias as well as a time-dependent interstate coupling
matrix element. This method is easily generalized to multistate tight-binding models.
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[. INTRODUCTION tive for low temperatures and intermediate coupling since no
cutoff in the range of the interaction can be assumed in this
The spin-boson model, a two-state system coupled bilinparameter regime. During the past several years, numerical
early to a harmonic reservoir, is the simplest model of quanmethods have been developed to carry out dynamical simu-
tum tunneling in a potential interacting with a dissipative lations[7,9,21—-2% for the spin-boson system in various pa-
environment. If the tunneling motion can be described by aameter regions. All these simulations, to various degrees,
double-well potential with a localized state in each well andsuffer from the ubiquitouslynamical sign problenin the
if these states are well separated from other high-lying stateintermediate and long time regimegor reviews se¢26—
the dynamics of the quantum particle can be confined to 28].)
two-dimensional Hilbert space. The dynamics is then fully Stimulated by the discovery that tunneling in the bare
described by the time evolution of theduced density matrix two-state system can be completely suppressed by a mono-
of the two-state system. The spin-boson model has foundhromatic driving field with suitably chosen amplitude and
widespread applications to various biological, chemical, andrequency{29-31], driving-induced suppression of tunneling
physical systems. For example, it has been used to model thie dissipative systems has attracted considerable interest.
tunneling of atoms between the tip of an atomic-force micro-Even in the presence of dissipation, one finds that the effect
scope and a surfadd,2], for studying the dynamics of the persistd32-37]. The significance of this finding for electron
magnetic flux in a superconducting interference deyRe transfer reactions in a polar solvent was discussed in Refs.
and for electron transfer reactiop$—7]. A multistate gener- [38,39. More recently, quantum Monte Carlo simulations
alization of the spin-boson system has also been used wemonstrating the equivalence of a nonequilibrium initial
study the dynamics of the ultrafast charge separation in bagreparation on the dynamics of an electron transfer system to
terial photosynthesi8—10]. (For other applications, s¢&1]  that of a driven spin-boson system were presented@.
and references therejn. Also interesting is the suggestion that external driving may
Within the path integral formulation of quantum mechan-be able to invert the populations of donor and acceptor states
ics[11-14, it is a straightforward procedure to eliminate the [34,39,4]. Chemically, this has important implications be-
reservoir if its dynamics may be regarded as linear. The efeause it may enable the activation of certain chemical reac-
fect of the environment is then captured by an influencdions by external driving fields. In addition to these studies,
functional giving rise to time-nonlocal correlations betweenseveral interesting contributions to the field of driven dissi-
different segments of the pafii5,13,1]1. In this approach, pative systems have also been published in recent ysees
any number of environmental modes, even an infinity offor example, Refd42-48§). For a comprehensive review on
them, can be treated conveniently by tracing out the bathkiriven quantum tunnelingn undamped as well as damped
analytically. However, the time-nonlocal interactions in thesystem$ see[49]. Most of the previous work on driven sys-
influence functional make the evaluation of the path integratems deals only with driving fields that couple to diagonal
difficult. If the coupling to the environmental modes is weak operators of the system. Little attention has been given to
and/or the temperature is high, the Markov approximatioroff-diagonal driving so faf37].
can be applied, which makes the interactions local and this Analytically, the questions surrounding driven tunneling
brings about substantial simplifications. However, many ofsystems are numerous and complex. In contrast to the un-
the interesting properties of the spin-boson model occur alamped driven system, except for theories with uncontrolled
low temperatures where the Markovian approximation is in-approximations, a rigorous analytical treatment of the dissi-
valid. Although substantial progress has been made on theative case has not been found. Hence it is crucial that a
analytical sidef16—20, numerical calculations are impera- nonperturbative approach be developed for treating this
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problem in the presence of a general time-dependent drivingtherel is the identity in the Hilbert space of the two-state
field in order to examine regions of the parameter space thaystem and the interaction of the two-state system with the
are inaccessible to any approximate methods. bath is given by

Real-time quantum Monte Carl@MC) simulations en-

able us to study the short time dynamics of driven systems in 1 c2g2

i H aqO 2
a numerically exact manner. Approximate methods that may Hi==2 | —CoX 000+ o2, (4)
be useful for longer propagation times can then be tested by 2%z mawi

comparison. With these, we are able to reliably determine the

range of validity of the various approximations applied towhere the two tight-binding states are at positiongy/2.
driven dissipative systems. There are also numerous systen)ge setq?=1 in the remainder of this paper.

that exhibit a fast enough relaxation for the QMC simula- e influence of the bosonic bath on the two-state system
tions to be able to cover the entire time interval Qf interest. jg captured by the spectral density
Another area where the techniques presented in this paper
are pertinent is in the simulations of pump-probe experi-
ments of large molecules. During the past decade, there has Jw)= 22
been substantial progress in the experimental study of ul- 27 Mo,
trafast intramolecular processes using ultrashort laser pulses
to excite and probe electronic populations. Therefore, it in the numerical calculations presented in this work we as-

necessary to take into account the effect of the time depensyme a continuous spectral density of Ohmic form
dence of the excitation field as well as the measurement

pulse in numerical simulationssee[50] for a review and ©
referencep J(w)=2mawnq} exp( - —) . (6)

The paper is organized as follows. In Sec. Il the dis- Wc
cretized path integral representation for the driven spin-
boson system is introduced and emphasis is put on the modia our notatione is the dimensionless Kondo parameter that
fications due to external driving. In Sec. Il we apply the pathdescribes the strength of the linear system-bath coupling and
integral representation to derive the QMC algorithm. Sectionw, is a high-frequency cutoff setting the typical time scale of
IV discusses the numerical results. In Sec. V some concluthe dynamics of the bath. Our approach, however, is not
sions are drawn and an outlook on possible future work igestricted to a certain form of the spectral density. In prin-

C

w—w,). (5)

given. ciple, any number of discrete modes as well as any continu-
ous spectral density can be treated. The systems described by
Il. TROTTER PATH INTEGRAL the Hamiltonian(1) exhibit a deterministic force represented
FOR THE DRIVEN SPIN-BOSON MODEL by the implicitly time-dependent two-state system Hamil-

tonian as well as a stochastic force originating from the cou-
We study a two-state system that is driven by a time-pling to the harmonic reservoir.
dependent force and at the same time coupled to a dissipative We calculate the expectation val(e,); of the system out
bosonic bath. In contrast with most of the work reported orof an initially prepared statgp;>, with the bath in thermal
the driven spin-boson system to date, the discretized patbquilibrium by itself under what is commonly called factor-
integral (PI) representation given in this section assumes 4dzed initial conditions £ is set to unity throughout this pa-
general form for the driving force, which can couple either toper)
diagonal operators of the two-state system or to the intersite
t
TTexp(ifodt’H(t’)”
t
Texp( =i fodt’H(t’)>

coupling matrix elements or both.
The Hamiltonian of the driven spin-boson system is given <0’Z>t=<(pi|<
Here (), denotes the thermal average over the bathand
e(t) A(t) T' are the time-ordering operator and anti-time-ordering op-
ol)="57027 5 0x, 2 erator of the exponential. In our notatiojs) denotes the
tight-binding state that corresponds to the sitth principle,
the methods developed here can also be extended to nonfac-
torizing initial states.

In order to evaluatéo,), in Eq. (7) numerically we con-
struct a discretized Pl expression. In the first step, the propa-
gation timet is divided intoN time slices of equal length
=t/N and at each of the discretization points a complete
) ’ basis of the two-state system is inserted. The exact short time
Hy=S ( Pe +mawaxz)| 3) propagator for theth interval U;=T exp[—if{f,l)adTH(r)]

= \2m, 2 e is replaced by the symmetric second-order propagator

by

H=Hq(t)+Hp+Hiny. (1) X a,

> lei). (7
B

Ho(t) is the Hamiltonian of the bare two-state system

with general time-dependent driving fieldgt) and A(t),
where o, and o are Pauli matrices. A field coupled te,
gives us a time-dependent bias, while a force coupled,to
describes a time-dependent intersite coupling. The Hamil
tonian of the harmonic bath is given by
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Ujsym: e ie(Hp+Hin/2 tem and bath degrees of freedom, the contribution of each
double path in Eq(11) also factorizes. The piecewise con-
(e i _ stant function corresponding to the forward path labeled by
_ ie(Hp+Hin/2
X Texp( 'le)sdTHS(T)) € mo the vectorf' is given by
= e 1o(Hy+Hing /2] fecg—ie(Hy - Hing 2, ® f(ty=f, for te[0}e],

which factorizes in the system and bath degrees of freedom. f(t)="f; for te[(j— De,(j+Hel,
The propagator of the driven two-state system alone is now
calculated numerically by introducing a subgrid of length f(t)=fy for te[(N—3)e,Ne].

within each elementary time interval witl ¢’ =¢. Within

each subinterval the functions(t) and A(t) are approxi- The functionb(t) corresponding to the backward path is

mated by constants;, and ;i , respectively. The propaga- defined analogously. Performing the trace over the bath de-

tors for the subintervals){ie® can then be evaluated analyti- grees of freedom results in the Feynman-Vernon influence

cally, giving functional [11,15 whose ensuing form suggests switching

from the forward and backward paths to the symmeijic

~ tree free and antisymmetric combinationg which describe propaga-
Uj *kﬂl Ui (9 tion along the diagonal and excursions away from the diag-

onal of the density matrix, respectively. The former is the
Being a product of unitary propagators for each subintervalduasiclassical path, while the latter describes quantum fluc-
the free propagatorajfree on the coarser grid are unitary, tuations. The piece-wise constant funcioj($) andx(t) are

independent of the number of subintervilsNotice that the given by
decomposition of the full Hamiltonian into a part that acts on _ —
the Hilbert space of the two-state system and a part acting on () =1(1)+b(t)+2q, (12
the bath degrees of freedom is not unique. The contribution _ _
stemming frome(t) o, in Eq. (2) can be included imH;,; or xO=H1)=b(1). (13
in Hs. Thus the bias of the system can be interpreted either The eyolution of the expectation value is then described
as a part of the interaction Hamiltonian or as a part of theOy the discretized path sum
free two-state system.

Using the second-order approximatidn®™ for the exact

M

propagators we obtain <0z>t:{xz;l} Pired X, mexd —P(x, m)]. (14
N T N
- Here Psed X, 1) represents the contribution from the double
~{ o sym sym . fre
(o2 <"D'|< J-Hl Ui Tz J-Hl Ui >B|‘P'>' (10 path (x, ) for free propagation of the two-state system and

exd —®(x,n)] describes the influence of the environment
For a fixed propagation tim&=¢N the limit N—o gives [11]. Further,%;, ., denotes the summation over all pos-
the exact expression fdir,), according to the Trotter theo- sible arrangements of paths for fixed boundary values. Since
rem [51]. Inserting the identity in the Hilbert space of the the system starts out at time zero from a diagonal state of the
two-state system at each intermediary time yields a disreduced density matrix and arrives at titnagain in a diag-
cretized double path sum for the expectation vall@. It  onal state, the respectiyecomponents are zero.

may be written in the form The influence functiona®P| x, n] is given by
t ty
CAIDY > O x, 7]= f dty f dtyx(t)x(ty)L (t—ty)
[SICHP PR (RPN Y 0 0

X{o: (UMD, USYMp, ...usymg t t
(l(UF Ry, UZ™ 0, N =i fodt2f02dt1X(t2) n(ty)L"(ta—ty)
XURY™PyURT1Pry - USPE UDM) ol ).

t

v 2ttt ), as
Here, the forward and backward paths are specified by vec-
tors of dimensionN+1, f'=(fy,f;,....fy),, and bt  whereL(t)=L'(t)+iL"(t) is the bath correlation function
=(bg,b1, ... by)", in which the first components are speci- [11,7] and
fied by the initial statde;). The operator$.. are the pro- 2
jectors on the two-state system stdies ), respectively. The = 2 Ca _ E j wd o M (16)
possible numerical values assigned to the resiuadmpo- @ mawi mJo w

nents of these vectors arel according to the particular

state of the two-state system onto which the system is pras a measure of the coupling strength to the bath degrees of
jected at the corresponding intermediate time. As the elfreedom. In the Ohmic case, we haye= aw.. The bath
ementary propagators given by E®) factorize in the sys- correlation function is defined byl1,8|
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IIl. QMC ALGORITHM

1 ©
L(t)=—| dewJ cot /2)coswt—isinwt], ) , . , )
® Wjo w (@) [coth fui2) ot] In this section we briefly review the QMC algorithfsee

(17) [26]) with emphasis on the modifications that are necessary

to account for a generalized driving field. The time evolution
where 5= 1/kgT is the inverse temperature. of the bare two-state system can be calculated numerically
According to the construction of the discretized path in-exactly by repeated applications of the free propagators

tegral, the functionsy(t) and »(t) are piecewise constant. {jfree | the Markovian limit, the dynamics of the density

- . . . ]
Upon performing the integrations over the elementary inter;irix of the two-state system can then be generated by re-

vals, the influence functionab[ x, ] may be written in the  yo a4 matrix multiplications of the elementary propagators
form of the density matrix of the two-state system

N-1 ] T free t77fre .
olxul=32 3 (iljn—ixlin), (19 V=L g am0) (28
J Unfortunately, this procedure does not work in the non-
where L, and L, are the real and imaginary part of the Markovian case. _
expressions In the general non-Markovian case, we need to address
the nonlocalness of the influence functional. Now suppose
(j+1/2e (k+1/2)e that the paths under consideration consistNoélementary
L; Zf t f dt;L(to—ty) time slices and that the quantum fluctuations given by the
( ( vector y are fixed. At each interval where the quantum fluc-
for N>j>k=1, tuation is zerocorresponding to the diagonal of the density
matrix of the two-state systenthe quasiclassical variable
(j+1/2)e ty M can take the values1 and vice versa. Thus, to a givgn
f( dt f( dul(t—t)+ize (19  configuration there corresponds a manifoldspiconfigura-
tions. We now show that for a fixeg configuration the sum
for N>j>1, over the remaining quasiclassical degrees of freedom can be
performed by matrix multiplication. As can be seen from Eg.
(j+12)s el2 ) (18), the real part of the influence functional depends on the
Ljo= f(]-l/Z)e dtzfo dt;L(t,—ty) for j=1. guantum fluctuations onlgand is thus the same for all paths
for a giveny configuration. For a giveny sequence Eq21)
For the Ohmic form(6) of the spectral density, the matrix réduces to a set of>83 matrices in they variable denoted
elements;, can be evaluated in analytic forf8]. \_/j[X]- Because the_ imaginary part of the influence fu_nc-
The construction of the discretized PI given above for thefional depends only linearly on both the quantum fluctuations
driven spin-boson system based on the propag&cis ap- and the quasiclassical degrees of freedom, the elementary

plicable to a general driving force. If the two-state system igPropagators of the density matrix of the bare two-state sys-
driven diagonally, the impact of the driving force can bet®m can be modified to take into account the contribution

included in the influence functional. The propagator of theStemming from the imaginary part of the influence functional
bare two-state system is then time independent and th@gepending on the actual time interval
changes in the corresponding algorithm are minor. In addi- p( N

tion to the influence functional encapsulating the influence of ';(j —exd i mlszH X||—|']

j—1/2)¢ k—1/2)e

Ljj=

i—1/2)e i—1/2¢

the stochastic forcél8), a contribution representing the de- ' 22)

terministic force
The resulting modified elementary propagators of the re-
. [Ne duced density matrix
Dulx1=i [ drx(r)e(7) 20
Vilx]=%;Vilxl (23
must be added to the influence functional.

The discretized path surfi4) with Eq. (18) is a conve-
nient starting point for performing real-time QMC simula-
tions of dissipative tight-binding mode|g,8]. Note that all
the influence from the solvent is contained in the matrix
elementsL ;. It is also important that the influence func- N
tional is bilinear in the off-diagonal variable, while it de- _ _ V2
pends only linearly on the quasiclassical coordinateWe (oa)xl=exst Req)[X])jHl Vitxd, 24
would like to point out that the construction of a discretized
Pl given here can also serve as a starting point for alternativethere at the initial timet=0 we haveny,=1 and yo=0,
numerical methods such as the tensor multiplication schemehereas at the final timé=Ne¢ the boundary values are
[23] or the path class summati¢B4]. The generalization of 7y=*1 andyy=0, reflecting the fact that all double paths
this procedure to tight-binding systems with several degreethat contribute too,), start and end in the diagonal of the
of freedom is also straightforward. reduced density matrix. Thus the summation over the quasi-

take into account all interactions of the actual inteljvaith

all later intervals withl>j. Consequently, the summation
over all quasiclassical degrees of freedom corresponding to
can be written as
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50.0 T T T T TABLE I. Model parameters.
Model el ¢ B €
400 b
la 0.25 R, 2/A, 2A,
Ib 0.25 BAq 2/A, —2A,
300 | Il 0.5 54, 10/A, —0.7%,
1l 0.25 10, 10/A, 0

Performance

performance computers with distributed memory architecture
(e.g., the Cray T3E compubethe applicability of the method
1 will be enhanced drastically.

10.0 |

Ideal linear scaling
* MPI Parallesization on PARAGON

IV. RESULTS AND DISCUSSION

0.0 s 2 N )
0.0 10.0 20.0 30.0 40.0 50.0

Number of Processors In this section we present results of the simulations that
are aimed at studying the impact of an external periodic driv-

FIG. 1. Typical scaling of a quantum Monte Carlo simulation on ) RO
a Paragon parallel computer. Each point is an average of 10 Md"d force on the dynamics of the dissipative two-state sys-

runs with 500000 sample paths and 40 time slices for the samieM- If an undriven system is exposed to a biasing force it
physical model. The MC runs are started separately on differenf@y be essentially trapped in the initial localized state or it
processors to eliminate the influence of message passing betwe8f@y tunnel through the barrier depending on the sign of the
specific sets of processors of the Paragon architecture using a me¥as, with the asymptotic values of,(t) being very close to
sage passing interfad#Pl). +1 on a time scale of several periods of the interstate cou-
pling frequency. Now the question arises whether one can
classical degrees of freedom is performed in a numericallgither induce a transition to the energetically higher-lying
stable and effective manner by matrix multiplication reduc-state or suppress the incoherent tunneling by an external field
ing the ubiquitous sign problem of real-time QMC simula- [44,47]. The study of both of these processes is essential for
tions remarkably. The expectation val(e,); is now given understanding the design of molecular switches.
by the remaining summation over the quantum fluctuations While in most of the literature on the driven spin-boson
X model a driving force coupling diagonally to the two-state
system is studiedwe treat both diagonal and off-diagonal
couplingto the external force. In this work we restrict our
<UZ>t:§ (o2l x]- (259 attention to monochromatic driving of the form

BecauseQ’(t) in Eq. (15) is symmetric for any spectral €(t)=€egt €,8IN(v 1) (26)
density functionJ(w), the real part of the influence func-

tional can be written in a symmetrized way ®Rgx] and

=330 21xiLjkxk - Thus the first factor in Eq24) defines a

Gaussian measure in the space of theonfigurations. The A(t)=Ag+A,sin(v,t). 27
Monte Carlo sampling is therefore reduced to the stochastic

integration of the quantitie&r,),[ x]. For a detailed descrip-

tion of the real-time Quantum Monte Carlo algorithm we
refer the reader t$26]. The essential modification of the
algorithm in comparison with the undriven case consists O[)e

replacing the time-independent free propagator by the t'meéions where analytical approximations are likely to fail, we

dependent free propagatdiy®®. have chosen to study in particular three different models,
_ Finally, let us focus on the technical features of the QMCyyhich we denote by I, II, and Ill. The parameters for each
simulation. A central problem of the QMC method is the model are given in Table I. A relatively weak system-bath
control of the statistical error. It is proportional toyMs,  coupling strength, low temperatures, and a moderate cutoff
whereN;s is the number of accepted samples. These sampleggequency define a parameter regime that is hardly accessible
are statistically independent and can therefore be calculatag analytical methods and therefore a regime that can only be
simultaneously on different CPUs. This makes the QMCaddressed by real-time QMC simulations. Though QMC
simulations a perfect candidate for massive parallelization ogjmulations are computationally expensive, they are the only
distributed memory architectures. As is illustrated in Fig. 1,viable method here.
the performancedefined as the longest CPU time that oc-
curred during the simulation, scaled by the monoprocessor
time of the simulationP(N) =T ax 1/ Tmaxp » WhereT paxn is
the longest CPU-time that occurred calculating 500000 In this section we discuss results for various models sub-
samples onn processors scales almost linearly with the ject to a diagonal driving force. Results for nondiagonal driv-
number of processors. With the availability of high- ing are presented in Sec. IV B.

All frequencies are given in units of the intersite coupling
matrix elementi.

To gain a global perspective on the qualitative dynamical
haviors of the driven spin-boson model in parameter re-

A. Diagonal driving force
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AV

FIG. 3. {a,), for model Ib for different monochromatic driving
r?oupled diagonally. The solid curve corresponds to the undriven
case. The dashed line has frequengy=A, and amplitudee,
=A,/2 and the dotted curve frequenay=0.4A, and amplitude
€,=6A . The squares correspond to a frequengy 0.3A; and an
amplitudee,=4A,.

FIG. 2. (a,), for model la for different monochromatic driving
coupled diagonally. The solid curve corresponds to the undrive
case. The dashed line has frequengy=Ay/2 and amplitudee,
=Ay/2 and the dotted curve frequeney=2A, and amplitudee,
=10A,.

1. Model |

~ Model I has a moderate dissipatian=0.25, with a rela-  driving field can suppress tunneling transfer, here for Model
tively large cutoff frequencyw.=5A, typical of electron |b with the backward bias, the driving field can actuadty-
transfer systems and a moderate temperg8s#e2/A,. We  hancethe tunneling transfer. When an external field with
have investigated the effects of external driving on both theymplitudee,= A,/2 and a relatively high frequenay= A, is
cases of a forwardmodel 13 and a backwardmodel I applied, after a short time the transfer is almost completely
bias. Figure 2 shows the expectation value of the populatiog, e off with only a low-amplitude oscillation of the period
difference(a,); for forward bias €o=24,), model 1a. NU- ¢ the driving force. However, if the frequency of the driving
solid line in the same figure for comparison hI’E“')rce is reduced to,=0.3A, and the amplitude is raised to
The results for the undriven system indicate that the sys-ea:4A°’ the terminal population of the initial state is now

tem exhibits a fast transfer to the lower-lying localized staterecjuced to about 0.4Gquares indicating that the driving

with some low-amplitude coherent oscillations. This fasti€ld is able to induce tunneling transfer from the donor to

transfer is expected due to the relatively large forward bia§,he acceptor state at a .muc.h higher efficiency. T.hese copdl—
applied to the system. However, the application of an extertONS chosen for the driving field represent the optimal choice
nal driving field can substantially alter the qualitative behay-for maximizing the transfer efficiency for the tight-binding
ior of the dynamics. If a weak driving force witky,= A o/2 particle _to undergo a transition 0L_1t_ of the_ energet_lcally
and v.=A/2 is applied, the tunneling rate is reduced only/lower-lying state due to egtgmal drlv_lng. This result illus-
moderately(dashed line in Fig. Rcompared to the undriven trates the remarkable possibility of using an external field to
system. However, if the driving amplitude is increased to@ctivate a tunneling transition that would have been impos-
€,=10A, and the frequency to=2A, the system is essen- Sible without the driving field. If the amplitude is further
tially trapped in the initial state on the timescale depicted inincreased beyond the opitmal value, the tunneling rate de-
Fig. 2 (dotted ling. This result confirms the general expec- creases again, as can be seen from the dotted curve, which
tation that a high-frequency driving field is able to localize acorresponds to a driving amplitude ef=6A.
tunneling system in the donor state, even in the presence of a It should be noted that the frequencies of the external
strong forward bias, which in the undriven case would havdorce for the results depicted by the dotted line and the
greatly enhanced the tunneling transfer to the acceptor.  squares in Fig. 3 are much lower than the intersite coupling
In Fig. 3 the dynamics for the same system but with aelement. Thus the driving can be considered adiabatic on the
backward biasy,=—2A,, model Ib, is shown for different time scale of the plot. A higher-frequency driving field, when
periodic external forces. Again the solid line corresponds tapplied to model la, would not further affect the dynamics of
the undriven system. In this case, since the system is biasale trapped system, except by inducing low-amplitude oscil-
negatively and heavily, the undriven system is essentiallyations on the otherwise static population. Therefore, plots
trapped in the initial statésolid line). There are coherent for higher driving frequencies have been omitted. Inciden-
oscillations that die out almost completely on the time scaldally, the small-amplitude oscillations seen in Fig. 3 at inter-
shown in this figure. For this case, the application of anmediate times for the backward biased system are not related
external driving field can also markedly change the dynamito the frequency of the driving force, but instead todts-
cal behavior. Whereas in model la with the forward bias theplitude These oscillations are expected to vanish with time
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FIG. 4. (o ,), for model Il for different monochromatic driving FIG. 5. {0 ,); for model la for different monochromatic driving

coupled diagonally. The solid curve corresponds to the undrivertoupled off diagonally. The solid curve corresponds to the undriven
case. The dashed line has frequengy4A, and amplitudee, case. The dashed line has frequengy=A, and amplitudeA,

since the dynamics must exhibit the frequency of the driving B. Nondiagonal driving force

force in the asymptotic limit. Up to this point, we have discussed systems with an ex-

ternal force coupled diagonally to the two-state system. We

now turn our attention to the influence of an external force

that periodically modifies the intersite coupling element. In
We now turn to model Il. Compared to model |, this sys-the case of a sinusoidal force the amplitude of Aemust

tem is characterized by a stronger dissipatiai+=0.5) buta  be smaller than the permanent couplihgin order to avoid

weaker backward biassE —0.7%A ) and at a low tempera- unphysical negative interstate coupling elemexgs).

ture (B=10/A,). The solid line in Fig. 4 again depic{s,);

without periodic driving. Again due to the backward bias, the 1. Model |

undriven system is essentially trapped in the initial state. The |n Fig. 5 the dashed line shows-,); for model la with an
dashed line shows the dynamics for a diagonal driving with @scillating interstate coupling elemenw=A, and A,
periodic force €,=10A, and v.=4A,). Despite the stron- =0.9A,). Compared to the undriven case, the dynamics is
ger damping here compared to model Ib, the system stilinodified in two ways. The transfer is slowed down consid-
exhibits a transition toward the higher-lying localized stateerably. The periodicity of the intertstate coupling element
even on the relatively short time scale of the plot. In contrasmanifests itself in an enhancement or suppression of the tran-
with the plateaulike dynamics of model Ib shown in Fig. 3, sition rate. The effect is more significant the faster the tran-
(o) of model Il is basically linear with a characteristic Sition is. In contrast to diagonal driving, the onset of the
oscillatory structure superposed on top of it. Within the timeeffect is instantaneous.

regime covered by the QMC simulations we do not observe Next we investigate model Ib, which has an inversed
a plateau in the population for model II. static bias. As we have seen from Fig. 3, diagonal driving

In this case, the oscillations of the driven system actua”yaccelerates the transfer. This does not seem to be the case for

reflects the periodicity of the driving force. Since the Cou_o;f—di_agﬁnal driv_ingf. \INithi_n ;s<erAies of simrl]JIations in tr}e
pling is strong, contributions stemming from higher harmon-P1ysically meaningiul regim&,<23,, no en ancement o

ics show up in the transient population. In contrast, '[heséhe transition .COUId be found. However, minor acceleration
: . . —._and deceleration of the transfer due to the time-dependent
harmonics are not present in the results for model Ib in Fig

3 . L . . . interstate coupling element can be observed as well. For a
above, for which the driving is essentially adiabatic and the% —A d litudes .= 0 9A - of the driv-
oscillations are related to the amplitude rather than the frell CAUENCYV,s =2, and an amplituda ;= 0.=3, of the driv
quency of the driving. ing force, this effect is illustrated in Fig. 6.
The same system has been studiefPias a prototypical
example of a strongly damped system undergoing a transi-
tion from an energetically lower well to the higher well in-  To further eludicate the effects of off-diagonal driving,
duced by external driving. The calculations[®] were car- we have also studied an unbiased system with0.25 and
ried out within the noninteracting-blip approximation and thecutoff frequencyw.=5A at low temperatur&gT=0.1A,,
interacting-blip chain approximation. The validity of these denoted model Ill. The amplitude of the time-dependent in-
approximation methods are confirmed by the present QMQerstate coupling element 5,=0.9A,. In Fig. 7 the solid
simulations. line represents the dynamics of the undriven system. The

2. Model Il

2. Model 11l
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FIG. 6. <U.Z>t for model Ib fqr different monochromatic driving FIG. 7. Dynamics of a tunnel process of an unbiased system
coupled off dlagonally. The solid curve corresponds to _the undrlVe'hnder a force coupling off diagonally. The electronic coupling is
c_ag,%.Ame dashed line has frequengy=A, and amplitudeA, always A(t)=A,+0.9sinf,t). The other parameters aresT

o =0.1A,, @=0.25, w;=5A,, and v,=0.5. One can clearly ob-

. . . serve the acceleration and deceleration effects.
dashed line shows the effects of a driving force with

=A,. The same typical acceleration/deceleration effects, th%romising candidate for such simulations.
slowing down and the instantaneous onset as we have ob- Apother advantage of a numerically exact method is its

served in Figs. 6 and 4, remain. The impact of periodic driv-3pjication as a benchmark for various approximate meth-
ing decreases with increasing frequency. For an extremelyqs At least for short to intermediate times, the accuracy and

high driving frequency ofvy=50A, the effects of the driv-  the range of validity of approximate methods can be checked
ing vanish almost completely. On the time resolution of ouragainst QMC simulations.

simulations, the average coupling element is uneffected by~ | order to obtain complete information about the dynam-
the rapidly oscillating time-dependent part of the interstat§es  the time evolution of the coherencg®0] (i.e., off-
coupling element. Corresponding plots have therefore bee&iagonal elements of the reduced density matriust be

omitted. known as well. Our ongoing work is focused on the modifi-
cation of the algorithm to calculate the off-diagonal elements
of the reduced density matrix.

As we have already mentioned, the QMC method does

The quantum Monte Carlo method for real- and complexnot invoke any approximation in the treatment of the driving
time path integration for the spin-boson mod&|26] has  force or the time-nonlocal interactions entering the influence
been extended to driven systems. The external field majunctional. On the other hand, the method is computationally
couple diagonally as well as off diagonally to the two-statedemanding. As the amount of the required computer memory
system. We studied periodic driving for both coupling is minor in comparison to the CPU time, it is perfectly suited

mechanisms, but our method can be used to treat any oth@lr massive parallel computers with a distributed memory
time-dependent driving force. The generalization to multi-grchitecture.

state tight-binding systems is also straightforward and per-
mits a wide range of applications for the method. The possi-
bility of controlling tunneling by external fields in two
principally different ways has been demonstrated by numeri- This work has been supported by the Deutsche Fors-
cal examples in the spin-boson model with Ohmic dissipachungsgemeinschafDFG) through the Sonderforschungs-
tion. By suitably adjusting the amplitude and frequency ofbereich 382. The authors would like to thank Reinhold Eg-
the periodic driving force it is possible to quench as well asger, Milena Grifoni, and Harald Weber-Gottschick for
to activate tunneling. From a chemical perspective, the lattestimulating discussions. The calculations have been carried
effect is interesting and relevant to the possibility of activat-out on the Cray T3E and Paragon parallel computers of the
ing chemical reactions by external driving on the basis ofRechenzentrum der UniversitStuttgart We gratefully ac-
microscopic processes. The methodology presented in thienoledge the support of Stefan tmann concerning the
work can also simulate pump-probe experimefstse[50]  efficient parallelization of the code in the context of the
and references thergiof electron transfer reactions in large Sonderforschungsbereich 382 of the DFG. C.H.M. was also
biological molecules where the huge number of vibrationalsupported by the National Science Foundati@rant No.
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