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Quantum Monte Carlo simulations of driven spin-boson systems
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A discretized path integral formulation of the real-time dynamics applicable to a general external field is
derived for the driven spin-boson model to extend the recently developed real-time Quantum Monte Carlo
algorithm to driven systems. Numerical results are obtained for a monochromatic periodic driving force and
Ohmic dissipation with a high-frequency cutoff. The impact of an external driving field on the dissipative
dynamics is examined for systems with a time-dependent bias as well as a time-dependent interstate coupling
matrix element. This method is easily generalized to multistate tight-binding models.
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I. INTRODUCTION

The spin-boson model, a two-state system coupled b
early to a harmonic reservoir, is the simplest model of qu
tum tunneling in a potential interacting with a dissipati
environment. If the tunneling motion can be described b
double-well potential with a localized state in each well a
if these states are well separated from other high-lying sta
the dynamics of the quantum particle can be confined t
two-dimensional Hilbert space. The dynamics is then fu
described by the time evolution of thereduced density matrix
of the two-state system. The spin-boson model has fo
widespread applications to various biological, chemical, a
physical systems. For example, it has been used to mode
tunneling of atoms between the tip of an atomic-force mic
scope and a surface@1,2#, for studying the dynamics of the
magnetic flux in a superconducting interference device@3#,
and for electron transfer reactions@4–7#. A multistate gener-
alization of the spin-boson system has also been use
study the dynamics of the ultrafast charge separation in b
terial photosynthesis@8–10#. ~For other applications, see@11#
and references therein.!

Within the path integral formulation of quantum mecha
ics @11–14#, it is a straightforward procedure to eliminate th
reservoir if its dynamics may be regarded as linear. The
fect of the environment is then captured by an influen
functional giving rise to time-nonlocal correlations betwe
different segments of the path@15,13,11#. In this approach,
any number of environmental modes, even an infinity
them, can be treated conveniently by tracing out the b
analytically. However, the time-nonlocal interactions in t
influence functional make the evaluation of the path integ
difficult. If the coupling to the environmental modes is we
and/or the temperature is high, the Markov approximat
can be applied, which makes the interactions local and
brings about substantial simplifications. However, many
the interesting properties of the spin-boson model occu
low temperatures where the Markovian approximation is
valid. Although substantial progress has been made on
analytical side@16–20#, numerical calculations are impera
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tive for low temperatures and intermediate coupling since
cutoff in the range of the interaction can be assumed in
parameter regime. During the past several years, nume
methods have been developed to carry out dynamical si
lations@7,9,21–25# for the spin-boson system in various p
rameter regions. All these simulations, to various degre
suffer from the ubiquitousdynamical sign problemin the
intermediate and long time regimes.~For reviews see@26–
28#.!

Stimulated by the discovery that tunneling in the ba
two-state system can be completely suppressed by a m
chromatic driving field with suitably chosen amplitude a
frequency@29–31#, driving-induced suppression of tunnelin
in dissipative systems has attracted considerable inte
Even in the presence of dissipation, one finds that the ef
persists@32–37#. The significance of this finding for electro
transfer reactions in a polar solvent was discussed in R
@38,39#. More recently, quantum Monte Carlo simulation
demonstrating the equivalence of a nonequilibrium init
preparation on the dynamics of an electron transfer system
that of a driven spin-boson system were presented in@40#.
Also interesting is the suggestion that external driving m
be able to invert the populations of donor and acceptor st
@34,39,41#. Chemically, this has important implications b
cause it may enable the activation of certain chemical re
tions by external driving fields. In addition to these studi
several interesting contributions to the field of driven dis
pative systems have also been published in recent years~see,
for example, Refs.@42–48#!. For a comprehensive review o
driven quantum tunneling~in undamped as well as dampe
systems! see@49#. Most of the previous work on driven sys
tems deals only with driving fields that couple to diagon
operators of the system. Little attention has been given
off-diagonal driving so far@37#.

Analytically, the questions surrounding driven tunnelin
systems are numerous and complex. In contrast to the
damped driven system, except for theories with uncontro
approximations, a rigorous analytical treatment of the dis
pative case has not been found. Hence it is crucial tha
nonperturbative approach be developed for treating
5565 © 1998 The American Physical Society
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problem in the presence of a general time-dependent dri
field in order to examine regions of the parameter space
are inaccessible to any approximate methods.

Real-time quantum Monte Carlo~QMC! simulations en-
able us to study the short time dynamics of driven system
a numerically exact manner. Approximate methods that m
be useful for longer propagation times can then be tested
comparison. With these, we are able to reliably determine
range of validity of the various approximations applied
driven dissipative systems. There are also numerous sys
that exhibit a fast enough relaxation for the QMC simu
tions to be able to cover the entire time interval of intere

Another area where the techniques presented in this p
are pertinent is in the simulations of pump-probe expe
ments of large molecules. During the past decade, there
been substantial progress in the experimental study of
trafast intramolecular processes using ultrashort laser pu
to excite and probe electronic populations. Therefore, i
necessary to take into account the effect of the time dep
dence of the excitation field as well as the measurem
pulse in numerical simulations~see @50# for a review and
references!.

The paper is organized as follows. In Sec. II the d
cretized path integral representation for the driven sp
boson system is introduced and emphasis is put on the m
fications due to external driving. In Sec. III we apply the pa
integral representation to derive the QMC algorithm. Sect
IV discusses the numerical results. In Sec. V some con
sions are drawn and an outlook on possible future work
given.

II. TROTTER PATH INTEGRAL
FOR THE DRIVEN SPIN-BOSON MODEL

We study a two-state system that is driven by a tim
dependent force and at the same time coupled to a dissip
bosonic bath. In contrast with most of the work reported
the driven spin-boson system to date, the discretized p
integral ~PI! representation given in this section assume
general form for the driving force, which can couple either
diagonal operators of the two-state system or to the inter
coupling matrix elements or both.

The Hamiltonian of the driven spin-boson system is giv
by

H5H0~ t !1Hb1H int . ~1!

H0(t) is the Hamiltonian of the bare two-state system

H0~ t !5
e~ t !

2
sz2

D~ t !

2
sx , ~2!

with general time-dependent driving fieldse(t) and D(t),
wheresz and sx are Pauli matrices. A field coupled tosz
gives us a time-dependent bias, while a force coupled tosx
describes a time-dependent intersite coupling. The Ha
tonian of the harmonic bath is given by

Hb5(
a

S pa
2

2ma
1

mava
2

2
xa

2 D I , ~3!
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where I is the identity in the Hilbert space of the two-sta
system and the interaction of the two-state system with
bath is given by

H int5
1

2(a S 2caxaq0sz1
ca

2q0
2

4mava
2

sz
2D , ~4!

where the two tight-binding states are at positions6q0/2.
We setq0

251 in the remainder of this paper.
The influence of the bosonic bath on the two-state sys

is captured by the spectral density

J~v!5
p

2(
a

ca
2

mava
d~v2va!. ~5!

In the numerical calculations presented in this work we
sume a continuous spectral density of Ohmic form

J~v!52pavq0
2 expS 2

v

vc
D . ~6!

In our notationa is the dimensionless Kondo parameter th
describes the strength of the linear system-bath coupling
vc is a high-frequency cutoff setting the typical time scale
the dynamics of the bath. Our approach, however, is
restricted to a certain form of the spectral density. In pr
ciple, any number of discrete modes as well as any cont
ous spectral density can be treated. The systems describe
the Hamiltonian~1! exhibit a deterministic force represente
by the implicitly time-dependent two-state system Ham
tonian as well as a stochastic force originating from the c
pling to the harmonic reservoir.

We calculate the expectation value^sz& t of the system out
of an initially prepared stateuw i., with the bath in thermal
equilibrium by itself under what is commonly called facto
ized initial conditions (\ is set to unity throughout this pa
per!

^sz& t5^w i u K FT†expS i E
0

t

dt8H~ t8! D G
3ŝzFT expS 2 i E

0

t

dt8H~ t8! D G L
b

uw i&. ~7!

Here ^ &b denotes the thermal average over the bath.T and
T† are the time-ordering operator and anti-time-ordering
erator of the exponential. In our notation,uws& denotes the
tight-binding state that corresponds to the sites. In principle,
the methods developed here can also be extended to no
torizing initial states.

In order to evaluatêsz& t in Eq. ~7! numerically we con-
struct a discretized PI expression. In the first step, the pro
gation timet is divided intoN time slices of equal length«
5t/N and at each of the discretization points a compl
basis of the two-state system is inserted. The exact short
propagator for thej th interval U j5T exp@2i*(j21)«

j« dt H(t)#
is replaced by the symmetric second-order propagator
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U j
sym5e2 i«~Hb1H int!/2

3FTexpS 2 i E
~ j 21!«

j «

dt Hs~t! D Ge2 i«~Hb1H int!/2

5e2 i«~Hb1H int!/2Ũ j
freee2 i«~Hb1H int!/2, ~8!

which factorizes in the system and bath degrees of freed
The propagator of the driven two-state system alone is n
calculated numerically by introducing a subgrid of length«8
within each elementary time interval withM«85«. Within
each subinterval the functions«(t) and D(t) are approxi-
mated by constants« jk andd jk , respectively. The propaga
tors for the subintervalsU jk

free can then be evaluated analyt
cally, giving

Ũ j
free')

k51

M

U jk
free. ~9!

Being a product of unitary propagators for each subinter
the free propagatorsŨ j

free on the coarser grid are unitary
independent of the number of subintervalsM. Notice that the
decomposition of the full Hamiltonian into a part that acts
the Hilbert space of the two-state system and a part actin
the bath degrees of freedom is not unique. The contribu
stemming frome(t)sz in Eq. ~2! can be included inHint or
in Hs . Thus the bias of the system can be interpreted ei
as a part of the interaction Hamiltonian or as a part of
free two-state system.

Using the second-order approximationsU j
sym for the exact

propagators we obtain

^sz& t'^w i u K F)
j 51

N

U j
symG†

ŝzF)
j 51

N

U j
symG L

b

uw i&. ~10!

For a fixed propagation timeT5«N the limit N→` gives
the exact expression for^sz& t according to the Trotter theo
rem @51#. Inserting the identity in the Hilbert space of th
two-state system at each intermediary time yields a
cretized double path sum for the expectation value~10!. It
may be written in the form

^sz& t' (
bN21 , . . . ,b1

(
f N21 , . . . ,f 1

3^w i u^U1
sym†P̂b1

U2
sym†P̂b2

•••UN
sym†ŝz

3UN
symP̂f N21

UN21
sym P̂f N22

•••U2
symP̂f 1

U1
sym&buw i&.

~11!

Here, the forward and backward paths are specified by v
tors of dimension N11, ft5( f 0 , f 1 , . . . ,f N) t, and bt

5(b0 ,b1 , . . . ,bN) t, in which the first components are spec
fied by the initial stateuw i&. The operatorsP̂6 are the pro-
jectors on the two-state system statesuw6&, respectively. The
possible numerical values assigned to the residualN compo-
nents of these vectors are61 according to the particula
state of the two-state system onto which the system is
jected at the corresponding intermediate time. As the
ementary propagators given by Eq.~8! factorize in the sys-
m.
w
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tem and bath degrees of freedom, the contribution of e
double path in Eq.~11! also factorizes. The piecewise con
stant function corresponding to the forward path labeled
the vectorft is given by

f ~ t !5 f 0 for te@0,1
2 «#,

f ~ t !5 f j for te@~ j 2 1
2 !«,~ j 1 1

2 !«#,

f ~ t !5 f N for te@~N2 1
2 !«,N«#.

The function b(t) corresponding to the backward path
defined analogously. Performing the trace over the bath
grees of freedom results in the Feynman-Vernon influe
functional @11,15# whose ensuing form suggests switchin
from the forward and backward paths to the symmetrich
and antisymmetric combinationsx, which describe propaga
tion along the diagonal and excursions away from the di
onal of the density matrix, respectively. The former is t
quasiclassical path, while the latter describes quantum fl
tuations. The piece-wise constant funcionsh(t) andx(t) are
given by

h~ t !5 f ~ t !1b~ t !12q̄, ~12!

x~ t !5 f ~ t !2b~ t !. ~13!

The evolution of the expectation value is then describ
by the discretized path sum

^sz& t5 (
$x,h%

Pfree~x,h!exp@2F~x,h!#. ~14!

HerePfree(x,h) represents the contribution from the doub
path (x,h) for free propagation of the two-state system a
exp@2F(x,h)# describes the influence of the environme
@11#. Further,($x j ,h j %

denotes the summation over all po
sible arrangements of paths for fixed boundary values. S
the system starts out at time zero from a diagonal state of
reduced density matrix and arrives at timet again in a diag-
onal state, the respectivex components are zero.

The influence functionalF@x,h# is given by

F@x,h#5E
0

t

dt2E
0

t2
dt1x~ t2!x~ t1!L8~ t22t1!

2 i E
0

t

dt2E
0

t2
dt1x~ t2!h~ t1!L9~ t22t1!

1
im

2 E
0

t

dt1x~ t1!h~ t1!, ~15!

whereL(t)5L8(t)1 iL 9(t) is the bath correlation function
@11,7# and

m5(
a

ca
2

mava
2

5
2

pE0

`

dv
J~v!

v
~16!

is a measure of the coupling strength to the bath degree
freedom. In the Ohmic case, we havem5avc . The bath
correlation function is defined by@11,8#
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L~ t !5
1

pE0

`

dv J~v! @coth~bv/2!cosvt2 isinvt#,

~17!

whereb51/kBT is the inverse temperature.
According to the construction of the discretized path

tegral, the functionsx(t) and h(t) are piecewise constan
Upon performing the integrations over the elementary in
vals, the influence functionalF@x,h# may be written in the
form

F@x,h#5 (
j 51

N21

(
k50

j

~x jL jk8 xk2 ix jL jk9 hk!, ~18!

where L jk8 and L jk9 are the real and imaginary part of th
expressions

L jk5E
~ j 21/2!«

~ j 11/2!«

dt2E
~k21/2!«

~k11/2!«

dt1L~ t22t1!

for N. j .k>1,

L j j 5E
~ j 21/2!«

~ j 11/2!«

dt2E
~ j 21/2!«

t2
dt1L~ t22t1!1 i

m

2
«

for N. j .1,

~19!

L j 05E
~ j 21/2!«

~ j 11/2!«

dt2E
0

«/2

dt1L~ t22t1! for j >1.

For the Ohmic form~6! of the spectral density, the matri
elementsL jk can be evaluated in analytic form@8#.

The construction of the discretized PI given above for
driven spin-boson system based on the propagator~8! is ap-
plicable to a general driving force. If the two-state system
driven diagonally, the impact of the driving force can
included in the influence functional. The propagator of t
bare two-state system is then time independent and
changes in the corresponding algorithm are minor. In ad
tion to the influence functional encapsulating the influence
the stochastic force~18!, a contribution representing the de
terministic force

Fdet@x#5 i E
0

N«

dt x~t!«~t! ~20!

must be added to the influence functional.
The discretized path sum~14! with Eq. ~18! is a conve-

nient starting point for performing real-time QMC simul
tions of dissipative tight-binding models@7,8#. Note that all
the influence from the solvent is contained in the mat
elementsL jk . It is also important that the influence func
tional is bilinear in the off-diagonal variablex, while it de-
pends only linearly on the quasiclassical coordinateh. We
would like to point out that the construction of a discretiz
PI given here can also serve as a starting point for alterna
numerical methods such as the tensor multiplication sch
@23# or the path class summation@24#. The generalization of
this procedure to tight-binding systems with several degr
of freedom is also straightforward.
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III. QMC ALGORITHM

In this section we briefly review the QMC algorithm~see
@26#! with emphasis on the modifications that are necess
to account for a generalized driving field. The time evoluti
of the bare two-state system can be calculated numeric
exactly by repeated applications of the free propaga
Ũ j

free. In the Markovian limit, the dynamics of the densi
matrix of the two-state system can then be generated by
peated matrix multiplications of the elementary propagat
of the density matrix of the two-state system

Vj5@~Ũ j
free!†Ũ j

free#~x j ,h j ;x j 21 ,h j 21!. ~21!

Unfortunately, this procedure does not work in the no
Markovian case.

In the general non-Markovian case, we need to addr
the nonlocalness of the influence functional. Now supp
that the paths under consideration consist ofN elementary
time slices and that the quantum fluctuations given by
vectorx are fixed. At each interval where the quantum flu
tuation is zero~corresponding to the diagonal of the dens
matrix of the two-state system! the quasiclassical variabl
can take the values61 and vice versa. Thus, to a givenx
configuration there corresponds a manifold ofh configura-
tions. We now show that for a fixedx configuration the sum
over the remaining quasiclassical degrees of freedom ca
performed by matrix multiplication. As can be seen from E
~18!, the real part of the influence functional depends on
quantum fluctuations only~and is thus the same for all path
for a givenx configuration!. For a givenx sequence Eq.~21!
reduces to a set of 333 matrices in theh variable denoted
Vj@x#. Because the imaginary part of the influence fun
tional depends only linearly on both the quantum fluctuatio
and the quasiclassical degrees of freedom, the elemen
propagators of the density matrix of the bare two-state s
tem can be modified to take into account the contribut
stemming from the imaginary part of the influence function
depending on the actual time interval

x̃ j5expS ih j (
l 5 j 11

N

x lL l j9 D . ~22!

The resulting modified elementary propagators of the
duced density matrix

Ṽj@x#5 x̃ jVj@x# ~23!

take into account all interactions of the actual intervalj with
all later intervals withl . j . Consequently, the summatio
over all quasiclassical degrees of freedom correspondingx
can be written as

^sz& t@x#5exp~2ReF@x# !)
j 51

N

Ṽj@x#, ~24!

where at the initial timet50 we haveh051 and x050,
whereas at the final timet5N« the boundary values ar
hN561 andxN50, reflecting the fact that all double path
that contribute tô sz& t start and end in the diagonal of th
reduced density matrix. Thus the summation over the qu
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classical degrees of freedom is performed in a numeric
stable and effective manner by matrix multiplication redu
ing the ubiquitous sign problem of real-time QMC simul
tions remarkably. The expectation value^sz& t is now given
by the remaining summation over the quantum fluctuati
x,

^sz& t5(
x

^sz& t@x#. ~25!

BecauseQ8(t) in Eq. ~15! is symmetric for any spectra
density functionJ(v), the real part of the influence func
tional can be written in a symmetrized way ReF@x#
5 1

2 ( j ,k51
N21 x jL jk8 xk . Thus the first factor in Eq.~24! defines a

Gaussian measure in the space of thex configurations. The
Monte Carlo sampling is therefore reduced to the stocha
integration of the quantitieŝsz& t@x#. For a detailed descrip
tion of the real-time Quantum Monte Carlo algorithm w
refer the reader to@26#. The essential modification of th
algorithm in comparison with the undriven case consists
replacing the time-independent free propagator by the ti
dependent free propagatorsŨ j

free.
Finally, let us focus on the technical features of the QM

simulation. A central problem of the QMC method is th
control of the statistical error. It is proportional to 1/ANs,
whereNs is the number of accepted samples. These sam
are statistically independent and can therefore be calcul
simultaneously on different CPUs. This makes the QM
simulations a perfect candidate for massive parallelization
distributed memory architectures. As is illustrated in Fig.
the performance~defined as the longest CPU time that o
curred during the simulation, scaled by the monoproces
time of the simulation:P(n)5Tmax,1/Tmax,n , whereTmax,n is
the longest CPU-time that occurred calculating 500 0
samples onn processors! scales almost linearly with the
number of processors. With the availability of hig

FIG. 1. Typical scaling of a quantum Monte Carlo simulation
a Paragon parallel computer. Each point is an average of 10
runs with 500 000 sample paths and 40 time slices for the s
physical model. The MC runs are started separately on diffe
processors to eliminate the influence of message passing bet
specific sets of processors of the Paragon architecture using a
sage passing interface~MPI!.
ly
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0

performance computers with distributed memory architect
~e.g., the Cray T3E computer! the applicability of the method
will be enhanced drastically.

IV. RESULTS AND DISCUSSION

In this section we present results of the simulations t
are aimed at studying the impact of an external periodic d
ing force on the dynamics of the dissipative two-state s
tem. If an undriven system is exposed to a biasing forc
may be essentially trapped in the initial localized state o
may tunnel through the barrier depending on the sign of
bias, with the asymptotic values ofsz(t) being very close to
61 on a time scale of several periods of the interstate c
pling frequency. Now the question arises whether one
either induce a transition to the energetically higher-lyi
state or suppress the incoherent tunneling by an external
@44,47#. The study of both of these processes is essentia
understanding the design of molecular switches.

While in most of the literature on the driven spin-bos
model a driving force coupling diagonally to the two-sta
system is studied,we treat both diagonal and off-diagona
coupling to the external force. In this work we restrict ou
attention to monochromatic driving of the form

e~ t !5e01easin~net ! ~26!

and

D~ t !5D01Dasin~nDt !. ~27!

All frequencies are given in units of the intersite couplin
matrix elementD0 .

To gain a global perspective on the qualitative dynami
behaviors of the driven spin-boson model in parameter
gions where analytical approximations are likely to fail, w
have chosen to study in particular three different mode
which we denote by I, II, and III. The parameters for ea
model are given in Table I. A relatively weak system-ba
coupling strength, low temperatures, and a moderate cu
frequency define a parameter regime that is hardly acces
to analytical methods and therefore a regime that can only
addressed by real-time QMC simulations. Though QM
simulations are computationally expensive, they are the o
viable method here.

A. Diagonal driving force

In this section we discuss results for various models s
ject to a diagonal driving force. Results for nondiagonal dr
ing are presented in Sec. IV B.

C
e

nt
en
es-

TABLE I. Model parameters.

Model a vc b e0

Ia 0.25 5D0 2/D0 2D0

Ib 0.25 5D0 2/D0 22D0

II 0.5 5D0 10/D0 20.75D0

III 0.25 10D0 10/D0 0



h

io

t

y
t
s
ia
e
v

ly

to
-
i

c-
a
o
v

t
s
l

t
al
a

h

del

th

ely
d
g
o
w

to
ndi-
ice
g
lly
s-
to

os-
r
de-
hich

nal
the
ling
the
n
of
cil-
ots
n-

er-
ated

e

e ven
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1. Model I

Model I has a moderate dissipationa50.25, with a rela-
tively large cutoff frequencyvc55D0 typical of electron
transfer systems and a moderate temperatureb52/D0 . We
have investigated the effects of external driving on both t
cases of a forward~model Ia! and a backward~model Ib!
bias. Figure 2 shows the expectation value of the populat
difference^sz& t for forward bias (e052D0), model Ia. Nu-
merical results for the undriven system are also shown as
solid line in the same figure for comparison.

The results for the undriven system indicate that the s
tem exhibits a fast transfer to the lower-lying localized sta
with some low-amplitude coherent oscillations. This fa
transfer is expected due to the relatively large forward b
applied to the system. However, the application of an ext
nal driving field can substantially alter the qualitative beha
ior of the dynamics. If a weak driving force withea5D0/2
and ne5D0/2 is applied, the tunneling rate is reduced on
moderately~dashed line in Fig. 2! compared to the undriven
system. However, if the driving amplitude is increased
ea510D0 and the frequency ton52D0 , the system is essen
tially trapped in the initial state on the timescale depicted
Fig. 2 ~dotted line!. This result confirms the general expe
tation that a high-frequency driving field is able to localize
tunneling system in the donor state, even in the presence
strong forward bias, which in the undriven case would ha
greatly enhanced the tunneling transfer to the acceptor.

In Fig. 3 the dynamics for the same system but with
backward biase0522D0 , model Ib, is shown for different
periodic external forces. Again the solid line corresponds
the undriven system. In this case, since the system is bia
negatively and heavily, the undriven system is essentia
trapped in the initial state~solid line!. There are coheren
oscillations that die out almost completely on the time sc
shown in this figure. For this case, the application of
external driving field can also markedly change the dynam
cal behavior. Whereas in model Ia with the forward bias t

FIG. 2. ^sz& t for model Ia for different monochromatic driving
coupled diagonally. The solid curve corresponds to the undriv
case. The dashed line has frequencyne5D0/2 and amplitudeea

5D0/2 and the dotted curve frequencyne52D0 and amplitudeea

510D0 .
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driving field can suppress tunneling transfer, here for Mo
Ib with the backward bias, the driving field can actuallyen-
hance the tunneling transfer. When an external field wi
amplitudeea5D0/2 and a relatively high frequencyn5D0 is
applied, after a short time the transfer is almost complet
turned off with only a low-amplitude oscillation of the perio
of the driving force. However, if the frequency of the drivin
force is reduced tone50.3D0 and the amplitude is raised t
ea54D0 , the terminal population of the initial state is no
reduced to about 0.40~squares!, indicating that the driving
field is able to induce tunneling transfer from the donor
the acceptor state at a much higher efficiency. These co
tions chosen for the driving field represent the optimal cho
for maximizing the transfer efficiency for the tight-bindin
particle to undergo a transition out of the energetica
lower-lying state due to external driving. This result illu
trates the remarkable possibility of using an external field
activate a tunneling transition that would have been imp
sible without the driving field. If the amplitude is furthe
increased beyond the opitmal value, the tunneling rate
creases again, as can be seen from the dotted curve, w
corresponds to a driving amplitude ofea56D0 .

It should be noted that the frequencies of the exter
force for the results depicted by the dotted line and
squares in Fig. 3 are much lower than the intersite coup
element. Thus the driving can be considered adiabatic on
time scale of the plot. A higher-frequency driving field, whe
applied to model Ia, would not further affect the dynamics
the trapped system, except by inducing low-amplitude os
lations on the otherwise static population. Therefore, pl
for higher driving frequencies have been omitted. Incide
tally, the small-amplitude oscillations seen in Fig. 3 at int
mediate times for the backward biased system are not rel
to the frequency of the driving force, but instead to itsam-
plitude. These oscillations are expected to vanish with tim

n

FIG. 3. ^sz& t for model Ib for different monochromatic driving
coupled diagonally. The solid curve corresponds to the undri
case. The dashed line has frequencyne5D0 and amplitudeea

5D0/2 and the dotted curve frequencyne50.4D0 and amplitude
ea56D0 . The squares correspond to a frequencyne50.3D0 and an
amplitudeea54D0 .
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since the dynamics must exhibit the frequency of the driv
force in the asymptotic limit.

2. Model II

We now turn to model II. Compared to model I, this sy
tem is characterized by a stronger dissipation (a50.5) but a
weaker backward bias (e520.75D0) and at a low tempera
ture (b510/D0). The solid line in Fig. 4 again depicts^sz& t

without periodic driving. Again due to the backward bias, t
undriven system is essentially trapped in the initial state. T
dashed line shows the dynamics for a diagonal driving wit
periodic force (ea510D0 andne54D0). Despite the stron-
ger damping here compared to model Ib, the system
exhibits a transition toward the higher-lying localized sta
even on the relatively short time scale of the plot. In contr
with the plateaulike dynamics of model Ib shown in Fig.
^sz& t of model II is basically linear with a characterist
oscillatory structure superposed on top of it. Within the tim
regime covered by the QMC simulations we do not obse
a plateau in the population for model II.

In this case, the oscillations of the driven system actua
reflects the periodicity of the driving force. Since the co
pling is strong, contributions stemming from higher harmo
ics show up in the transient population. In contrast, th
harmonics are not present in the results for model Ib in F
3 above, for which the driving is essentially adiabatic and
oscillations are related to the amplitude rather than the
quency of the driving.

The same system has been studied in@9# as a prototypical
example of a strongly damped system undergoing a tra
tion from an energetically lower well to the higher well in
duced by external driving. The calculations in@9# were car-
ried out within the noninteracting-blip approximation and t
interacting-blip chain approximation. The validity of the
approximation methods are confirmed by the present Q
simulations.

FIG. 4. ^sz& t for model II for different monochromatic driving
coupled diagonally. The solid curve corresponds to the undri
case. The dashed line has frequencyne54D0 and amplitudeea

510D0 .
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B. Nondiagonal driving force

Up to this point, we have discussed systems with an
ternal force coupled diagonally to the two-state system.
now turn our attention to the influence of an external for
that periodically modifies the intersite coupling element.
the case of a sinusoidal force the amplitude of theDa must
be smaller than the permanent couplingD0 in order to avoid
unphysical negative interstate coupling elementsD(t).

1. Model I

In Fig. 5 the dashed line shows^sz& t for model Ia with an
oscillating interstate coupling element (nD5D0 and Da
50.9D0). Compared to the undriven case, the dynamics
modified in two ways. The transfer is slowed down cons
erably. The periodicity of the intertstate coupling eleme
manifests itself in an enhancement or suppression of the t
sition rate. The effect is more significant the faster the tr
sition is. In contrast to diagonal driving, the onset of t
effect is instantaneous.

Next we investigate model Ib, which has an invers
static bias. As we have seen from Fig. 3, diagonal driv
accelerates the transfer. This does not seem to be the cas
off-diagonal driving. Within a series of simulations in th
physically meaningful regimeDa<D0 , no enhancement o
the transition could be found. However, minor accelerat
and deceleration of the transfer due to the time-depend
interstate coupling element can be observed as well. F
frequencynD5D0 and an amplitudeDa50.9D0 of the driv-
ing force, this effect is illustrated in Fig. 6.

2. Model III

To further eludicate the effects of off-diagonal drivin
we have also studied an unbiased system witha50.25 and
cutoff frequencyvc55D0 at low temperaturekBT50.1D0 ,
denoted model III. The amplitude of the time-dependent
terstate coupling element isDa50.9D0 . In Fig. 7 the solid
line represents the dynamics of the undriven system.

n
FIG. 5. ^sz& t for model Ia for different monochromatic driving

coupled off diagonally. The solid curve corresponds to the undri
case. The dashed line has frequencynD5D0 and amplitudeDa

50.9D0 .
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dashed line shows the effects of a driving force withnD

5D0 . The same typical acceleration/deceleration effects,
slowing down and the instantaneous onset as we have
served in Figs. 6 and 4, remain. The impact of periodic dr
ing decreases with increasing frequency. For an extrem
high driving frequency ofnD550D0 the effects of the driv-
ing vanish almost completely. On the time resolution of o
simulations, the average coupling element is uneffected
the rapidly oscillating time-dependent part of the interst
coupling element. Corresponding plots have therefore b
omitted.

V. CONCLUSIONS AND OUTLOOK

The quantum Monte Carlo method for real- and compl
time path integration for the spin-boson model@7,26# has
been extended to driven systems. The external field m
couple diagonally as well as off diagonally to the two-sta
system. We studied periodic driving for both couplin
mechanisms, but our method can be used to treat any o
time-dependent driving force. The generalization to mu
state tight-binding systems is also straightforward and p
mits a wide range of applications for the method. The po
bility of controlling tunneling by external fields in two
principally different ways has been demonstrated by num
cal examples in the spin-boson model with Ohmic dissi
tion. By suitably adjusting the amplitude and frequency
the periodic driving force it is possible to quench as well
to activate tunneling. From a chemical perspective, the la
effect is interesting and relevant to the possibility of activ
ing chemical reactions by external driving on the basis
microscopic processes. The methodology presented in
work can also simulate pump-probe experiments~see @50#
and references therein! of electron transfer reactions in larg
biological molecules where the huge number of vibratio
degrees of freedom can by modeled by a spectral den
function that can be obtained from molecular dynam
simulations ~see, for example,@10#!. The ultrafast charge
separation in bacterial photosynthesis is perhaps the m

FIG. 6. ^sz& t for model Ib for different monochromatic driving
coupled off diagonally. The solid curve corresponds to the undri
case. The dashed line has frequencynD5D0 and amplitudeDa

50.9D0 .
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promising candidate for such simulations.
Another advantage of a numerically exact method is

application as a benchmark for various approximate me
ods. At least for short to intermediate times, the accuracy a
the range of validity of approximate methods can be check
against QMC simulations.

In order to obtain complete information about the dynam
ics, the time evolution of the coherences@20# ~i.e., off-
diagonal elements of the reduced density matrix! must be
known as well. Our ongoing work is focused on the modi
cation of the algorithm to calculate the off-diagonal elemen
of the reduced density matrix.

As we have already mentioned, the QMC method do
not invoke any approximation in the treatment of the drivin
force or the time-nonlocal interactions entering the influen
functional. On the other hand, the method is computationa
demanding. As the amount of the required computer mem
is minor in comparison to the CPU time, it is perfectly suite
for massive parallel computers with a distributed memo
architecture.
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n
FIG. 7. Dynamics of a tunnel process of an unbiased syst

under a force coupling off diagonally. The electronic coupling
always D(t)5D010.9 sin(nD0

t). The other parameters arekBT
50.1D0 , a50.25, vc55D0, and nD50.5. One can clearly ob-
serve the acceleration and deceleration effects.
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